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Abstract The aim of this paper is to present a thorough reassessment of the Snyman–Fatti
(SF) Multi-start Global Minimization Algorithm with Dynamic Search Trajectories, first
published twenty years ago. The reassessment is done with reference to a slightly modified
version of the original method, the essentials of which are summarized here. Results of the
performance of the current code on an extensive set of standard test problems commonly in
use today, are presented. This allows for a fair assessment to be made of the performance
of the SF algorithm relative to that of the popular Differential Evolution (DE) method, for
which test results on the same standard set of test problems used here for the SF algorithm,
are also given. The tests show that the SF algorithm, that requires relatively few parameter
settings, is a reliably robust and competitive method compared to the DE method. The results
also indicate that the SF trajectory algorithm is particularly promising to solve minimum
potential energy problems to determine the structure of atomic and molecular clusters.

Keywords Global optimization algorithm · Dynamic search trajectories · Random
multi-start optimization · Lennard-Jones clusters

1 Introduction

When first published twenty years ago, the Snyman–Fatti (SF) Multi-start Global Minimi-
zation Algorithm with Dynamic Search Trajectories [1] for global continuous unconstrained
optimization, promised to have great potential impact because its performance, on the limited
number of test problems considered then, appeared to be better or at least competitive with
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that of the established global optimization methods known and used at the time. During the
intervening years, however, this promise was not fulfilled.

Although a fair number of authors have referred to the SF method in the literature, and
most notably it was extensively used to solve laminate and composite structural problems
[2–6], it has certainly not enjoyed extensive theoretical interest and wide practical application
initially hoped for. We believe there are three main reasons for this disappointing response.
Firstly, although the SF algorithm has similar stochastic features, it was overshadowed by
the emergence of more exotic new stochastic methods, such as simulated annealing (SA) and
genetic algorithms (GAs), that came to the fore and created extensive interest and associated
research activity at the time the SF algorithm was published. Since then further attention to
the SF method was also undermined by the prominence enjoyed by new population based
global optimization algorithms such as the differential evolution (DE) and particle swarm
optimization (PSO) algorithms that were published in the mid 1990s. These evolutionary
methods are conceptually simple and relatively easy to implement and have been extensively
studied and tested. Currently variants of these methods, as well as related techniques, con-
tinue to be the subjects of much international research. Of particular interest here is the recent
paper by Laskari et al. [7] in which they propose a hybrid algorithm that combines the SF
and DE algorithms.

A second reason that inhibited the use of the SF method is that, although the physical idea
on which it is based is fairly simple, the implementation is relatively complicated and also
requires gradient information, compared to the function-value-only evolutionary techniques.
Thirdly, at a time when extensive tests results are available for the other methods, the sparse
and outdated test results presented for the SF algorithm in the original paper do not represent
a sufficient incentive to create renewed interest in the SF method. This is a pity since, as
the authors will attempt to show in this paper, a careful computer implementation of the SF
algorithm yields a code which is very robust and gives results that are competitive with that
of one of the best evolutionary algorithms currently available.

With the above in mind, this paper focusses on the thorough numerical testing of the
performance of the current SF code on an extensive set of standard test problems commonly
in use today. These results allow for a fair assessment to be made of the performance of the
SF algorithm relative to that of other popular evolutionary global optimization methods by
comparing, in particular, its performance with that of the Differential Evolution (DE) method.
The DE algorithm is selected for comparison because it is currently considered as arguably
one of the best global optimization methods available. In the next section, a description of
the basic methodology employed in the SF algorithm is presented. This is followed by the
presentation of computational results for both the SF and DE algorithms applied to: (i) an
extensive set of standard test problems; and (ii) the determination of lowest energy structures
of Lennard-Jones clusters. The paper concludes with a reassessment of the SF algorithm in
the light of the results of the new computational experiments.

Before continuing, however, it is of interest to briefly relate the SF algorithm to similar
ideas in molecular dynamics that pre-date the publication of the SF method in 1987, and
of which at the time Snyman and Fatti were unaware. Basic to the SF method is the search
for relatively low local minima of an objective function through energy conserving search
trajectories of a particle of unit mass. These trajectories are generated by the solution of a
second order dynamical differential equation involving the gradient of the function, where
the function is taken to represent the potential energy of the particle in space. For the numer-
ical integration use is made of the approximately energy-conserving leap-frog method [8].
Methods similar in spirit to the SF algorithm, although not specifically aimed at searching
for the global minimum, have been proposed in the molecular simulation area. For example,
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the intrinsic states method of Stillinger and Weber [9] uses molecular dynamic trajectories
to search the space of importance, with regular switches after a number of integration steps
to a local minimization method like conjugate gradient to find a local minimum. The SF
algorithm is also similar to the standard practice in molecular dynamics for describing the
dynamics of a particle system with fixed volume so that the total energy is conserved. This
approach, in which a second order dynamical equation identical to that of the SF algorithm
is used, has been around since the late 1950s (see [10]). Also of interest is the use, since
1970, of leap-frog algorithms in molecular dynamics to perform the numerical integration
(see [11]), and are actually an outgrowth of what is known as the Verlet algorithm [12].

2 A description of the SF global minimization methodology using dynamic search
trajectories

For a detailed presentation and discussion of the motivation and theorems on which the SF
algorithm is based, the reader is referred to the original paper of Snyman and Fatti [1]. Here
we restrict ourselves to a summary giving the essentials of the multi-start global optimization
methodology using dynamic search trajectories.

We consider the unconstrained global optimization problem that can be stated: for a con-
tinuously differentiable objective function f : X ⊂ �n → �, find a point x∗ ∈ X , such that

f ∗ = f (x∗) = minimumx∈X { f (x)} (1)

The SF algorithm applied to this problem, is basically a multi-start technique in which several
starting points are sampled in the domain of interest X (usually defined by a box in �n), and a
local search procedure is applied to each sample point. The method is heuristic in essence with
the lowest minimum found after a finite number of searches being taken as an estimate of f ∗.

2.1 Local convergence of search trajectories

In the local search the SF algorithm explores the variable space using search trajectories
derived from the differential equation:

ẍ = −∇ f (x(t)) (2)

where ∇ f (x(t)) is the gradient vector of f (x(t)). The gradient vector may also be denoted
by g(x(t)). Equation 2 describes the motion of a particle of unit mass in an n-dimensional
conservative force field, where f (x(t)) represents the potential energy of the particle. The
search trajectories generated here are similar to those used in Snyman’s dynamic method for
local minimization [13,14]. In the SF global method, however, the trajectories are modified
in a manner that ensures, in the case of multiple local minima, a higher probability of conver-
gence to a lower local minimum than would have been achieved had conventional gradient
local search methods, including the local dynamic method of Snyman, been used. The spe-
cific modifications employed results in an increase in the regions of convergence of the lower
minima including, in particular, that of the global minimum. A stopping rule, derived from a
Bayesian probability argument, is used to decide when to end the global sampling and take
the current overall minimum value of f , taken over all sampling points (iterations) to date,
as the global minimum f ∗.
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For initial conditions, position x(0) = x0 and velocity v(0) = ẋ(0) = 0, integrating (2)
from time 0 to t , implies the energy conservation relationship:

1

2
‖v(t)‖2 + f (x(t)) = 1

2
‖v(0)‖2 + f (x(0)) = f (x(0)) (3)

The first term on the left-hand side of (3) represents the kinetic energy, whereas the second
term represents the potential energy of the particle of unit mass, at any instant t . Obviously
the particle will start moving in the direction of steepest descent and its kinetic energy will
increase, and thus f will decrease, as long as

−∇ f · v > 0 (4)

where · denotes the scalar product.
If descent is not met along the generated path then the magnitude of the velocity v decreases

as it moves uphill and its direction changes towards a local minimizer. If the possibility of
more than one local minimizer exists and we are interested in finding the global minimum, a
realistic global strategy is to monitor the trajectory and record the point xm , and correspond-
ing velocity vm = ẋm and function value f m , at which the minimum along the path occurs,
letting the particle continue uninterrupted along its path with conserved energy. This is done
in the hope that it may surmount a ridge of height f r , f m < f r < f 0 = f (x0), continuing
further along a path that may lead to an even lower value of f beyond the ridge. On the
other hand it is necessary to terminate the trajectory before it retraces itself or approximately
retraces itself in indefinite periodic or ergodic (space-filling) motion. A proper termination
condition, and that employed in the SF algorithm, is to stop the first trajectory once it reaches
a point with a function value close to its starting value f s = f 0 = f (x0) while still moving
uphill, i.e. while g · v > 0. At this point, once termination has occurred and after setting the
best point xb := xm , it is proposed that a further auxiliary or inner trajectory be started from
a new inner starting point xs := 1

2 (x0 + xb) with initial velocity 1
2 vm and associated starting

function value f s = f (xs). Again for this new auxiliary or inner trajectory the function value
is monitored, and for this new trajectory its xm and associated vm are recorded anew. On its
termination, again once the function value approaches f s sufficiently closely while moving
uphill, the starting point for the next inner trajectory is taken as xs := 1

2 (xs + xb) with initial
velocity 1

2 vm , where xb again corresponds to the overall best point for the current sampling
point. This generation of successive inner trajectories is continued until xb converges or the
gradient vector ∇ f (xb) = g(xb) is effectively zero. (In the original paper a theorem (The-
orem 2.1) is given that guarantees this convergence if the level set {x : f (x) ≤ f (x0)} is
bounded and certain conditions concerning the continuity and differentiability of f (x) are
satisfied.)

2.2 Numerical considerations in terminating trajectories

Of course, the above strategy assumes that the trajectory obtained from the solution of (2) is
exactly known at all time instances. In practice this is not possible, and the generation of the
trajectories is done numerically by means of the leap-frog scheme [13]: Given initial position
x0 and initial velocity v0 = ẋ0 and a time step �t , compute for k = 0, 1, 2, . . .

xk+1 := xk + vk�t

vk+1 := vk − g(xk+1)�t
(5)
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The initial velocity over the first (k = 0) step (or on a restart) is taken as vk := − 1
2 gk�t .

The leap-frog scheme (5) requires the selection of an integration time step �t . In practice, for
the first starting point (first iteration i t = 1), �t is set at �t = 1.0. Thereafter, also for i t = 1,

the following tests are performed: If �t < �tmin = [D/(50‖g(x0)‖)] 1
2 , set �t := �tmin,

where D is the diameter of the box defining the region of interest X. This guarantees a
first step no smaller than one hundredth of the diameter (D) of the box. On the other hand,
if �t > �tmax = √

50�tmin, set �t := �tmax, which guarantees a step no larger than one
half of the diameter (D) of the region of interest. If necessary, the time step �t is adjusted
further so as to ensure descent on the first step.

Because of inaccuracies introduced by the numerical leap-frog integration scheme it com-
putes only approximately energy conserving trajectories [13]. Additional test are therefore
introduced in the actual implementation to ensure termination of the inner trajectories and
convergence of xb, updated after each inner trajectory, to a local minimum for each sample
starting point x0. In particular an inner trajectory is terminated if the particle moves uphill
and f (xk) − f̆ > α( f (xs) − f̆ ) or its kinetic energy = 1

2‖vk‖2 < (1 − α)( f (xs) − f̆ ),
where f̆ is the lowest available value of f (x), and α a parameter chosen to be almost equal
to but less than one. Initially f̆ := ∞ and updated as new values of f k are computed, and a
typical choice for α is α := 0.95. An inner trajectory is also terminated if the particle starts
zig–zagging, i.e. if the scalar product vk+1 · vk < 0, and if the number of inner steps exceeds
a prescribed number (inkmax).

The sequence of inner (auxiliary) trajectories is terminated, i.e. the final inner trajec-
tory ends if at any point xk+1, for given tolerances εx and εg , either ‖xk+1 − xk‖ < εx or
‖g(xk+1)‖ < εg (whilst f k+1 ≤ f m and f k+1 < f b), or if the overall allowable number of
steps (kmax) per sample point is exceeded. At this point the current values xk+1 and asso-
ciated function value f k+1 (the local minimum for the current iteration (i.e. current starting
point)) are passed to a global evaluation procedure.

2.3 Global termination of SF algorithm

Once the sequence of inner (auxiliary) trajectories for the current iteration (i.e. current random
starting point) is terminated, the local minimum (xk+1 with function value f k+1) obtained at
that point, is evaluated for its probability of being the global minimum after i t iterations. This
global component of the algorithm involves a stochastic criterion that reports the probability
of the lowest obtained minimum to be the global one. To this end, let R j denote the region of
convergence of a local minimum f̂ j in the search space, and α j denote the probability that a
randomly selected point falls within R j . Let R∗ and α∗ denote the corresponding quantities
for the global minimum f ∗. Snyman and Fatti [1] then argue that for the local search method-
ology described above, because of its special characteristic of seeking a low local minimum,
one may assume that for a large class of problems of practical and scientific importance:

α∗ = maximum j {α j } (6)

Accordingly they made use of the following theorem to terminate the multi-start algorithm.

Theorem Let ir be the number of sample (starting) points falling within the region of con-
vergence of the current overall minimum f opt after i t random starting points have been
sampled. Then under the assumption given in (6) and a noninformative prior distribution,
the probability that f opt be equal to f ∗, Pr [ f opt = f ∗], satisfies the following relationship:

Pr ≥ q(i t, ir) = 1 − (i t + 1)!(2 × i t − ir)!/[(2 × i t + 1)!(i t − ir)!] (7)
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In practice a tolerance ε f is prescribed in order to determine whether a newly obtained
local minimum also corresponds to the current overall minimum f opt . Thus if, at the end of
the final inner trajectory for a given starting point, | f k+1 − f opt | < ε f then the number of
successes ir is incremented by one. Also a prescribed target value q∗ is set for q(i t, ir) so
that once q(i t, ir) > q∗ the global procedure terminates with f ∗ := f opt .

In the above subsections we have attempted to present a thorough but readable account of
the essentials of the SF methodology. Of course, in practice much more detailed bookkeep-
ing is done to record, for example, the exact lowest f opt value and corresponding overall

/

/
/

.

Fig. 1 Schematic overview of SF algorithm
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best minimum point xob. This, and a few other refinements to ensure a logical and robust
implementation have, for the sake of clarity, not been detailed above.

Figure 1 provides a schematic overview of the structure and essential elements of the SF
multi-start global optimization algorithm. A detailed pseudo-code, in exact correspondence
with the actual FORTRAN program currently in use by the authors and employed in the tests
of the SF algorithm reported here, as well as the FORTRAN code itself, are available from
the authors on request.

3 Numerical results for set of standard test problems

In this section we test the performance of the SF method using a selected set of 48 standard
test problems. These problems range from 2 to 20 in dimension and have a variety of inherent
difficulty. All problems have continuous variables. A detailed description of each problem
in this set can be found in the recent paper by Ali et al. [15]. Note that we excluded the Odd
Square Problem (OSP) and Price’s Transistor Modelling Problem (PTM) from the test set
proposed by Ali et al. [15], since none of the algorithms could ever solve these problems.
We compare the results obtained for the SF algorithm with those obtained by the classical
differential evolution (DE) method [16] (denoted DE/rand/1/bin in [17]). The results are for
the algorithms run 100 times on each of the 48 test problems to determine the success rate
(sr ≡ percentage success). All computations were done on a personal computer with an
AMD Athlon 64 X2 Dual Core 4400+ CPU with 4Gb RAM, using a single processor.

For the standard implementation of the SF algorithm the minimum number of iterations
was set at minit := 0 unless otherwise indicated. Other standard settings are maxit := 5000,

kmax := 5000, inkmax := 40. The parameter α was set to α := 0.95, and the tolerances
ε f := 10−2, εg := 10−3 and εx := 10−4. For termination on satisfaction of (7), the target
probability was set at q∗ := 0.99.

In Table 1 we compare the performance of the standard SF algorithm with that of the
classical DE algorithm, for each n-dimensional problem (Problem(n)) in the standard set.
In our implementation of the classical DE algorithm, the mutation operation is repeated until
the trial point falls within the allowed search space, as described by Ali and Fatti [18]. For
the SF algorithm we record the average number of function-cum-gradient-vector evaluations
(No. f g) required for each problem, as well as the average relative absolute function value
error, r f := | f c − f ∗|/(1 + | f ∗|) at termination, where f c is the approximation to f ∗
obtained. The termination is determined here by the satisfaction of (7) for the specified q∗.
For all the problems, the components of the gradient vector ∇ f were computed by forward
finite differences with variable perturbations of 10−6. For the DE algorithm, which uses
only function values, the average number of required function evaluations (No. f ) is listed.
We used a population size N := 10n, maximum number of iterations (generations) 10,000
and terminated the algorithm whenever | fmax − fmin| < 10−4. The reported DE parameters
(cross-over setting Cr and mutation scaling factor F) were determined by running the DE
algorithm for values from 0.2 to 0.9, in increments of 0.1, for all possible combinations of
Cr and F . The reported settings produce the best success rate. If different parameter values
produce the same success rate, the settings that require the least number of function eval-
uations are reported. For both algorithms the percentage success rate (sr ) is also indicated
for each problem. A success was counted when the absolute error was less than 0.01. The
average values listed are taken over successful runs only. The last column in Table 1 contains
the relative CPU time, denoted rcpu, defined as the CPU time required by the SF algorithm,
divided by the CPU time required by the DE algorithm.
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Table 1 Comparison of SF (target probability termination) with DE (termination when | fmax− fmin| < 10−4)

Problem Snyman–Fatti Differential evolution rcpu

No. f g sr r f Cr F No. f sr r f

ACK(10) – 0 – 0.8 0.2 15, 485 100 7.8e − 05 –

AP(2) 755 100 6.4e − 05 0.9 0.4 623 100 6.3e − 05 0.66

BL(2) 62 100 5.9e − 10 0.9 0.3 636 100 1.3e − 06 0.27

B1(2) 1,239 98 2.9e − 08 0.9 0.4 863 100 1.4e − 06 1.52

B2(2) 907 98 4.1e − 09 0.8 0.3 871 100 1.2e − 06 1.11

BR(2) 371 100 6.9e − 08 0.8 0.3 760 100 1.2e − 06 0.46

CB3(2) 854 96 4.2e − 08 0.9 0.3 564 100 6.4e − 05 0.88

CB6(2) 794 99 1.4e − 05 0.9 0.3 680 100 1.4e − 05 0.74

CM(2) 665 95 1.4e − 09 0.9 0.2 501 100 3.1e − 05 1.32

DA(2) 999 100 2.4e − 08 0.9 0.4 1, 108 100 2.3e − 08 0.50

EP(2) 722 30 4.6e − 09 0.7 0.8 1, 144 78 4.4e − 07 0.98

EM(10) – 0 – 0.4 0.4 147, 139 100 1.5e − 05 –

EXP(10) 179 100 8.1e − 08 0.8 0.2 6, 168 100 1.0e − 05 0.07

GP(2) 1,198 100 1.4e − 06 0.9 0.4 738 100 2.9e − 07 0.97

GW(10) 12,542 95 2.2e − 03 0.4 0.2 31, 839 100 3.1e − 05 1.74

GRP(3) 4,362 100 5.0e − 04 0.9 0.4 1, 368 100 6.4e − 05 12.84

H3(3) 967 100 4.0e − 08 0.8 0.3 1, 026 100 1.1e − 05 2.14

H6(6) 949 99 1.1e − 08 0.6 0.4 5, 205 100 1.3e − 06 0.63

HV(3) 838 100 9.8e − 08 0.9 0.5 2, 165 100 3.0e − 06 0.42

HSK(2) 321 98 2.6e − 06 0.9 0.3 474 100 2.6e − 06 0.81

KL(4) 405 100 8.6e − 06 0.9 0.2 730 100 2.1e − 05 1.01

LM1(3) 2,041 100 2.9e − 07 0.9 0.3 1, 132 100 4.0e − 06 2.70

LM2(10) 78,314 98 1.3e − 06 0.7 0.2 7, 641 100 1.6e − 05 41.35

MC(2) 346 99 2.6e − 05 0.9 0.3 502 100 2.9e − 05 0.66

MR(3) 3,355 100 1.1e − 03 0.9 0.3 1, 193 100 1.2e − 04 3.03

MCP(4) 768 100 1.3e − 05 0.9 0.4 1, 015 100 1.7e − 06 1.21

ML(5) 5,171 41 5.9e − 08 0.8 0.8 13, 936 100 3.7e − 06 1.09

MRP(2) 620 100 3.8e − 04 0.9 0.5 1, 033 100 3.5e − 03 0.35

MGP(2) 6,962 9 1.8e − 06 0.2 0.7 5, 818 96 1.7e − 06 1.81

NF2(4) 11,019 99 1.3e − 03 0.8 0.4 14, 582 100 4.1e − 04 2.27

NF3(10) 748 100 7.4e − 10 0.9 0.4 21, 596 100 8.4e − 08 0.05

PP(10) 342 100 1.0e − 05 0.7 0.2 9, 386 100 1.0e − 05 0.49

PRD(2) 7,074 8 2.2e − 08 0.8 0.5 1, 351 100 5.9e − 05 5.87

PQ(4) 1,519 100 5.5e − 06 0.9 0.4 2, 481 100 1.7e − 06 0.35

RG(10) – 0 – 0.3 0.2 27, 938 100 6.5e − 06 –

RB(10) 6,062 100 1.5e − 04 0.9 0.6 71, 222 100 1.9e − 05 0.12

SAL(5) 13,828 95 5.6e − 07 0.2 0.2 500, 050 15 3.9e − 04 0.03

SF1(2) 9,224 93 6.3e − 04 0.9 0.3 1, 709 100 8.6e − 03 4.02

SF2(2) 49,718 98 3.4e − 03 0.9 0.4 2, 389 100 1.9e − 04 30.13

SBT(2) 5,344 100 6.8e − 08 0.8 0.4 2, 244 100 6.4e − 08 3.98

SWF(10) – 0 – 0.5 0.2 17, 986 100 5.7e − 08 –
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Table 1 continued

Problem Snyman–Fatti Differential evolution rcpu

No. f g sr r f Cr F No. f sr r f

S5(4) 855 100 3.0e − 04 0.8 0.6 4, 580 100 3.0e − 04 0.27

S7(4) 983 100 2.7e − 04 0.8 0.5 3, 640 100 2.7e − 04 0.46

S10(4) 1,181 100 3.9e − 04 0.9 0.6 4, 048 100 3.9e − 04 0.62

FX(5) 14,811 84 1.5e − 06 0.2 0.9 367, 796 48 1.5e − 06 0.15

SIN(20) 1,223 51 6.3e − 07 0.8 0.2 28, 936 100 8.8e − 06 0.52

ST(9) – 0 – 0.9 0.5 36, 129 100 0.0e + 00 –

WP(4) 2,483 100 1.4e − 05 0.9 0.6 7, 220 100 5.3e − 06 0.24

Note that the SF algorithm could never solve 5 of the 48 test problems (ACK(10), EM(10),
RG(10), SWF(10) and ST(9)), and that for a further 20 problems it did not achieve a 100%
success rate. In those cases where the success rate wasn’t 100%, better success can be achieved
by increasing the minimum number of iterations (minit). This is especially necessary for
functions that contain many identical near global local minima, with the effect that all these
identical local minima have a large effective basin of convergence. Premature convergence
to this near global minimum is prevented by increasing the minimum number of iterations.
Table 2 contains these results. Note that the 10D Ackley problem ACK(10) can now be solved
46% of the time, while all 20 other problems now have a 100% success rate. A total of 43 of
the 48 test problems can thus be solved with a 100% success rate, one problem with a 46%
success rate, while only four problems (EM(10), RG(10), SWF(10) and ST(9)) are never
solved. It is worth noticing that for the selected tolerances the convergence, as indicated in
the column listing the relative function value error r f , is remarkably sharp.

It is difficult to make a fair comparison of the efficiency of the two algorithms with regard
to number of function evaluations required for convergence because of the different natures
of the respective algorithms. The DE algorithm only required function values, while the SF
algorithm uses both function and gradient information. If the gradients are computed by
forward finite differences, as was done for all the problems in Tables 1 and 2, the effec-
tive number of function evaluations required is equal to (n + 1)× the No. f g listed in the
tables. Thus we conclude that in the cases where the gradient information cannot be obtained
cheaply, that the DE algorithm may be significantly more efficient. (Of course in practical
engineering cases, such as in the field of structural design and CFD studies, where the func-
tion values are computed by simulation, the gradients are often obtained very cheaply as a
byproduct in the computation of the function value.) However, recall that significant effort
is required to find the optimal DE parameter settings for each problem. If one set of DE
parameters is used for all problems, we found the best total success rate over all problems
for Cr = 0.6 and F = 0.6. If we compare the performance at this setting with the optimal
settings for each problem, we noted a reduction in success rate on 3 of the 48 problems, while
on the remaining 45 problems the same success rate was recorded, but on average requiring
a factor 2.8 more function evaluations. This includes problem ST(9), where the average DE
setting requires a factor 24.9 more function evaluations than the optimal DE setting for this
problem. If this outlier is excluded, the average DE settings still require a factor 2.3 more
function evaluations as compared to the optimal DE settings per problem.

In additional numerical experiments (for which the results are not detailed here) the
computations for the SF algorithm were repeated for a selection of the 48 problems, using
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Table 2 Effect of changing the
minimum number of iterations on
the SF algorithm

Problem Minit No. f g sr r f rcpu

ACK(10) 20 311,260 46 4.7e − 05 99.62

B1(2) 10 1,486 100 2.5e − 08 1.68

B2(2) 10 1,131 100 3.3e − 09 1.26

CB3(2) 10 1,177 100 3.9e − 08 1.04

CB6(2) 10 1,153 100 1.4e − 05 1.01

CM(2) 10 774 100 1.5e − 09 1.51

EP(2) 60 903 100 3.9e − 09 1.18

GW(10) 60 17,366 100 8.9e − 04 2.42

H6(6) 10 1,392 100 7.7e − 09 0.93

HSK(2) 10 493 100 2.6e − 06 1.14

LM2(10) 80 82,156 100 1.1e − 06 42.83

MC(2) 10 543 100 2.6e − 05 1.27

ML(5) 60 5,356 100 5.5e − 08 1.13

MGP(2) 200 12,638 100 1.8e − 06 3.30

NF2(4) 40 13,524 100 9.5e − 04 2.75

PRD(2) 200 7,492 100 1.6e − 08 6.19

SAL(5) 200 16,294 100 3.5e − 07 0.04

SF1(2) 30 9,371 100 1.1e − 03 4.08

SF2(2) 1,500 71,505 100 2.8e − 03 43.33

FX(5) 150 16,582 100 1.5e − 06 0.17

SIN(20) 80 1,453 100 6.0e − 07 0.56

analytical expressions for the gradients. The structure of these selected test problems allows
for very efficient computation of the analytical gradients. As example, the percentage reduc-
tion in CPU time, only due to using analytical gradients rather than finite differences, for the
problems ACK(10), EP(2), GW(10), H3(3), H6(6), RB(10) and SAL(5) are 84%, 53%, 77%,
25%, 44%, 33% and 18% respectively. In some cases, an increase in problem dimension
further increases the benefit of analytical gradients, e.g. a CPU time reduction of 78% and
69% is achieved for the 20D RB and 20D SAL test problems respectively. However, some-
times there is no benefit in using analytical gradients, typically if the structure of the cost
function is such that multiple chain rule applications are required to compute the analytical
gradients.

Nevertheless, even in the worst case of obtaining gradient information using finite differ-
ences, there are eight problems where the SF algorithm requires less function evaluations.
These are problems BL(2), EXP(10), NF3(10), PP(10), RB(10), SAL(5), S5(4) and FX(5).
On the other hand the DE algorithm is vastly more economic in terms of total function eval-
uations in solving the eight problems, GRP(3), LM1(3), LM2(10), MR(3), PRD(2), SF1(2),
SF2(2) and SBT(2). In the remaining cases the performance of the algorithms are, within an
order of magnitude, comparable to each other.

If, however, CPU time is used as comparative measure, the SF algorithm is more efficient
(rcpu < 1) than the DE algorithm for 20 of the test problems. Since both algorithms were
implemented in FORTRAN, using the same compiler, this indicates that the SF algorithm has
less overhead than the DE algorithm for the test problems considered. This could be due to
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Fig. 2 Convergence history for the SF algorithm on three selected problems
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Fig. 3 Convergence history for the DE algorithm on three selected problems

the DE algorithm that requires random number generation in each iteration, and the repeated
mutation operation to ensure that the trial point falls within the allowed search space.

Further insight into the different nature of the two methods may be obtained by inspection
of typical global convergence histories of the respective methods for different problems. As
representative, we selected the GW(10), RB(10) and S10(4) problems. Convergence histo-
ries for typical runs of the methods for each of these problems are plotted in Figs. 2 and 3
respectively. The number of function evaluations axis was normalized in these figures, to
highlight the similarity of the convergence histories between different problems. Figure 2
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illustrates that the SF algorithm rapidly obtains a relatively low function value, and then the
remainder of computational effort is spent to confirm that what has been found to date is
the global minimum (within probability q∗). The DE algorithm on the other hand gradually
improves on the global best function value until the convergence criterion is met.

In a second and perhaps fairer comparison of the efficiency of the trajectory method to
obtain a low local minimum relative to the performance of the DE algorithm, we evaluate
the performance of the algorithms when we shoot for the known global target value of f ∗.
Such a test can be considered realistic in the sense that in many practical cases the target
objective function value may be known, e.g. f ∗ = 0, or it is required to obtain a solution
which corresponds to some low target function value. In the implementations we terminate
an algorithm once it reaches a point where the absolute error | f c − f ∗| < 9×10−4, i.e. when
a function value is obtained which is identical to the target optimal solution to at least three
decimal digits. For the trajectory method this test is done at convergence for a given random
starting point (at the end of an iteration). Otherwise the parameters specified are the same
as before, except that no q∗ need be specified. Again we record the average, over 100 runs,
of the number of function-cum-gradient-vector evaluations (No. f g) required to reach the
prescribed target for each problem in the standard set of test problems. These values together
with the success rates are listed in Table 3. For the trajectory algorithm we again also record
the average relative absolute function value error, r f := | f c − f ∗|/(1+| f ∗|) at termination.

In Table 3 we compare the results for the SF algorithm with the average number of func-
tion evaluations (No. f ) required for the DE algorithm. As before, we use a population size
N := 10n, and the optimal DE parameters F and Cr are again determined by running the
DE for all possible combinations between 0.2 and 0.9, using intervals of 0.1. The average
values listed in the table are taken over successful runs only.

Table 3 shows that the SF algorithm is extremely robust in successfully obtaining the
global optimum for 44 of the 48 problems. Again, for the tolerances specified, the conver-
gence to the global optimum is sharp as shown in the column listing the relative function
value errors, r f . Using CPU time as comparative measure, the SF algorithm outperforms the
DE method in 34 of the problems. For seven of these 34 problems, the SF algorithm requires
more than a factor 10 less CPU time. Admittedly, the DE algorithm is also more than a factor
10 faster than the SF algorithm for 5 of the test problems.

4 Potential energy minimization

The physics upon which the SF algorithm is based would suggest that the SF algorithm is
well suited to problems concerned with potential energy minimization. To illustrate this,
we use the SF algorithm to obtain the lowest energy structures of Lennard-Jones clusters
[19]. The problem was solved for the number of atoms Na ranging from 3 to 30, and for
Na = 38. To suppress rigid body motion, the first atom is fixed at the origin, the second
atom is constrained along the x-axis and the third atom is constrained to lie in the x–y plane.
Therefore, the total number of variables is 3Na − 6. For this problem, the required gradients
are computed analytically, which is significantly more efficient than finite difference com-
putations. Exactly the same SF parameter settings were used as before, except the parameter
maxit (maximum number of random starting points) was increased from 5,000 to 1 million.
The random initial positions are generated within a cube of side lengths four, centered around
the origin. Whenever any coordinate magnitude exceeds two, a quadratic penalty is added
to the cost function. This penalty is necessary to prevent the optimization algorithm from
locating low energy solutions that consist of a number of smaller clusters.
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Table 3 Comparison of SF with DE (global function value termination)

Problem Snyman–Fatti Differential evolution rcpu

No. f g sr r f Cr F No. f sr r f

ACK(10) 111,654 55 6.8e − 05 0.7 0.2 12,399 100 8.0e − 04 43.86

AP(2) 154 100 6.3e − 05 0.8 0.3 336 99 2.6e − 04 0.38

BL(2) 5 100 3.6e − 10 0.9 0.3 356 100 4.1e − 04 0.26

B1(2) 283 100 3.7e − 07 0.9 0.4 609 100 4.1e − 04 0.51

B2(2) 190 100 1.5e − 07 0.9 0.4 589 100 4.1e − 04 0.40

BR(2) 94 100 2.9e − 07 0.9 0.4 438 100 3.0e − 04 0.27

CB3(2) 173 100 2.5e − 07 0.9 0.4 320 100 4.0e − 04 0.39

CB6(2) 159 100 1.4e − 05 0.7 0.2 367 100 2.1e − 04 0.36

CM(2) 138 100 7.6e − 07 0.9 0.3 258 100 3.7e − 04 0.63

DA(2) 375 100 2.7e − 08 0.8 0.4 886 100 0.0e + 00 0.24

EP(2) 133 100 1.7e − 06 0.8 0.3 441 100 2.0e − 04 0.47

EM(10) – 0 – 0.2 0.4 149,485 100 5.3e − 05 –

EXP(10) 41 100 1.3e − 07 0.8 0.2 3,855 100 3.5e − 04 0.03

GP(2) 259 100 1.8e − 05 0.9 0.5 507 100 1.0e − 04 0.38

GW(10) 9,073 100 2.0e − 06 0.2 0.2 26,566 100 6.8e − 04 1.51

GRP(3) 2,960 100 3.4e − 04 0.9 0.5 723 100 5.7e − 04 15.74

H3(3) 220 100 2.8e − 07 0.8 0.4 543 100 1.0e − 04 0.90

H6(6) 212 100 4.0e − 07 0.3 0.3 3,988 100 1.5e − 04 0.19

HV(3) 217 100 5.0e − 06 0.9 0.5 1,597 100 4.6e − 04 0.16

HSK(2) 69 100 2.6e − 06 0.8 0.3 239 100 1.2e − 04 0.42

KL(4) 119 100 3.1e − 05 0.6 0.6 100 100 4.3e − 04 1.25

LM1(3) 472 100 1.8e − 06 0.7 0.2 668 100 5.4e − 04 1.02

LM2(10) 19,075 100 2.1e − 06 0.7 0.2 5,368 100 7.3e − 04 15.77

MC(2) 84 100 2.7e − 05 0.9 0.4 262 100 1.6e − 04 0.67

MR(3) 6,122 100 4.7e − 04 0.9 0.4 429 100 5.1e − 04 12.35

MCP(4) 202 100 3.2e − 05 0.9 0.4 340 100 4.4e − 04 0.88

ML(5) 919 100 1.9e − 07 0.9 0.8 10,920 100 3.2e − 04 0.24

MRP(2) 296 100 3.2e − 05 0.3 0.9 4,374 81 4.6e − 04 0.05

MGP(2) 1,800 100 3.0e − 06 0.2 0.9 3,363 97 2.0e − 04 0.82

NF2(4) 14,645 100 4.1e − 04 0.7 0.5 28,390 100 6.6e − 04 1.47

NF3(10) 198 100 6.9e − 09 0.9 0.4 17,284 100 3.0e − 06 0.01

PP(10) 96 100 4.5e − 04 0.6 0.2 6,811 100 1.3e − 05 0.17

PRD(2) 1,061 100 5.1e − 08 0.7 0.5 863 100 2.5e − 04 1.40

PQ(4) 396 100 5.8e − 05 0.9 0.4 1,615 100 5.2e − 04 0.18

RG(10) – 0 – 0.2 0.2 23,328 100 7.3e − 04 –

RB(10) 2,917 100 1.2e − 04 0.9 0.6 61,063 100 7.5e − 04 0.07

SAL(5) 2,229 100 5.1e − 06 0.2 0.3 297,559 27 7.0e − 04 0.01

SF1(2) 5,132 100 4.1e − 07 0.2 0.5 13,458 93 4.6e − 04 0.30

SF2(2) 85,025 58 8.0e − 04 0.8 0.5 2,297 100 8.1e − 04 55.24

SBT(2) 882 100 1.3e − 07 0.9 0.5 1,854 100 2.0e − 06 0.80

SWF(10) – 0 – 0.4 0.2 15,528 100 0.0e + 00 –
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Table 3 continued

Problem Snyman–Fatti Differential evolution rcpu

No. f g sr r f Cr F No. f sr r f

S5(4) 154 100 2.9e − 04 0.8 0.7 3,881 100 8.3e − 05 0.07

S7(4) 173 100 2.7e − 04 0.8 0.5 2,563 100 7.1e − 05 0.12

S10(4) 211 100 3.9e − 04 0.7 0.4 2,477 100 1.1e − 04 0.18

FX(5) 2,538 100 2.7e − 06 0.2 0.8 155,652 49 4.9e − 05 0.06

SIN(20) 208 100 4.2e − 06 0.8 0.2 23,044 100 1.7e − 04 0.10

ST(9) – 0 – 0.9 0.5 29,074 100 4.3e − 04 –

WP(4) 683 100 6.3e − 05 0.9 0.6 5,461 100 6.0e − 04 0.09

The numerical results are summarized in Table 4, where the number of atoms (Na), the
average CPU time, average relative absolute function value error (r f ), the average required
number of function-cum-gradient-vector evaluations ( f g) and the average number of starting
points required are listed for each cluster. Note that a 100% success rate was achieved on
all these problems, where the global function value termination criterion was used. A run
terminated as soon as a local minimum was located with a function value within 0.01 of
the known published minimum. Because the final trajectory is allowed to converge to the
local minimum with great accuracy the actual difference found in practise is significantly
smaller (see listings of r f values in Table 4). Especially noteworthy is the location of the
global minimum for the 38 atom cluster. This structure is a face-centered-cubic (fcc) trun-
cated octahedron, and according to Wales and Doye [19] presents the “first hurdle” for any
global optimization technique in potential energy surface (PES) minimization. On average
more than 200 thousand starting points are required before a starting point is generated that
converges to the global minimum. This seems large, but compared to the estimated number of
local minima (1011) it is insignificant. Note that no tuning was performed on the SF algorithm
to solve these problems; the standard settings were used throughout.

Limited testing was performed using the target probability termination criterion, since this
criterion requires significantly more computational resources before convergence is obtained.
As an example, the 30 atom cluster requires 29.3 million function-cum-gradient evaluations
on average to terminate based on a 0.99 target probability. The success rate was 95 out of
100 runs. This is significantly more demanding than the 4.9 million function-cum-gradient
evaluations required on average when termination is based on a known global minimum.

Comparing the DE algorithm to the SF algorithm for problems of this type is heavily biased
against the DE algorithm. The update mechanisms in classical DE is not well suited to this
type of problem. Nevertheless, results are available in the paper by Moloi and Ali [20], where
more than 38 million function evaluations are reported to solve Na = 10, where at worst
the SF algorithm requires 228384 function evaluations (assuming finite difference gradient
evaluation). Even a DE algorithm tailor-made for this type of problem (the topographical
DE) requires more than 7 million function evaluations [21].

5 Conclusion

Based on numerical tests performed here, using an extensive set of standard test problems,
the (slightly modified) SF global optimization algorithm is reassessed and found to be a reli-

123



J Glob Optim (2009) 43:67–82 81

Table 4 Performance of the SF
algorithm on Lennard-Jones
problems (global function value
termination)

Na CPU(s) r f No. f g No. starts

3 0.0002 9.4e − 07 273 1.4

4 0.0003 4.0e − 06 432 1.3

5 0.0006 6.0e − 07 577 1.3

6 0.0057 3.2e − 06 5,408 10.8

7 0.0049 9.3e − 07 3,368 6.1

8 0.0035 1.6e − 06 1,881 3.0

9 0.0087 3.7e − 06 3,859 6.1

10 0.0259 2.5e − 06 9,516 14.8

11 0.0432 2.2e − 06 13,272 19.5

12 0.0432 4.4e − 06 11,061 15.6

13 0.0731 1.3e − 06 16,018 22.3

14 0.0362 1.5e − 06 6,809 8.9

15 0.0666 8.4e − 06 11,016 13.9

16 0.1246 5.1e − 06 18,387 23.2

17 0.4083 9.8e − 06 53,653 67.2

18 2.3705 1.5e − 05 279,742 346.9

19 1.2057 3.1e − 06 125,462 152.4

20 0.9144 4.4e − 06 88,066 103.6

21 4.5257 5.1e − 06 396,907 459.0

22 1.8587 2.4e − 06 147,852 165.4

23 5.6617 1.7e − 06 412,942 453.1

24 4.1844 2.5e − 06 280,793 298.8

25 5.7582 2.9e − 06 358,753 373.2

26 34.3503 2.1e − 06 1,980,050 2,012.1

27 25.2900 1.7e − 06 1,350,630 1,337.6

28 27.7834 1.5e − 06 1,372,260 1,327.4

29 77.1493 2.3e − 06 3,546,520 3,348.9

30 113.4188 2.6e − 06 4,921,010 4,527.8

38 10049.5545 5.1e − 07 275,062,479 214,730.5

ably robust and competitive method compared to the differential evolution (DE) algorithm.
The latter algorithm is representative of popular evolutionary global optimization methods
currently in wide usage. The implementation of the current SF code requires relatively few
parameter settings and, without any tuning, the algorithm was successfully applied over a
wide range of problems using standard parameter settings (mainly a set of three convergence
tolerances). The results of further numerical experiments also indicate that the SF trajectory
algorithm is particularly promising for solving minimum potential energy problems, to locate
the structure of atomic and molecular clusters.

Although here we considered only the application of the SF algorithm to unconstrained
problems, it may easily be adapted to handle constrained problems. This is done by trans-
forming the constrained problem to an unconstrained penalty function minimization problem
in the standard manner, and then applying the SF algorithm to determine the global uncon-
strained optimum of the penalty function. Once this point is determined it is used to determine
the set of active constraints. With the unconstrained global minimizer of the penalty function
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as single starting point, the intersection of the active constraints is obtained by applying the
SF algorithm to the minimization of the sum of the squares of the active constraint function
values. This point of intersection of the active constraints may be taken as the global optimum
of the constrained problem. This application to practical constrained problems has [22] and
is current successfully being applied by the authors, and the further results will be reported
elsewhere.
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